Flink的DataStreamAPI

Flink的DataStreamAPI
曦DataStream API是Flink的核心层API。一个Flink程序,其实就是对DataStream的各种转换。具体来说,代码基本上都由以下几部分构成:
在Flink1.12以前,旧的添加source的方式,是调用执行环境的addSource()方法:
1 | DataStream<String> stream = env.addSource(...); |
方法传入的参数是一个“源函数”(source function),需要实现SourceFunction接口。
从Flink1.12开始,主要使用流批统一的新Source架构:
1 | DataStreamSource<String> stream = env.fromSource(…) |
Flink直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的Source,通常情况下足以应对我们的实际需求。
准备工作:
为了方便练习,这里使用WaterSensor作为数据模型。
id | String | 水位传感器类型 |
---|---|---|
ts | Long | 传感器记录时间戳 |
vc | Integer | 水位记录 |
具体代码如下:
1 | public class WaterSensor { |
这里需要注意,我们定义的WaterSensor,有这样几个特点:
- 类是公有(public)的
- 有一个无参的构造方法
- 所有属性都是公有(public)的
- 所有属性的类型都是可以序列化的
Flink会把这样的类作为一种特殊的POJO(Plain Ordinary Java Object简单的Java对象,实际就是普通JavaBeans)数据类型来对待,方便数据的解析和序列化。另外我们在类中还重写了toString方法,主要是为了测试输出显示更清晰。
我们这里自定义的POJO类会在后面的代码中频繁使用,所以在后面的代码中碰到,把这里的POJO类导入就好了。
1.从集合、文件、元素中读取数据
最简单的读取数据的方式,就是在代码中直接创建一个Java集合,然后调用执行环境的fromCollection方法进行读取。这相当于将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用,一般用于测试。
1 | package com.day02 |
1.2从Socket读取数据
1 | DataStream<String> stream = env.socketTextStream("localhost", 7777); |
1.3从Kafka中读取数据
Flink官方提供了连接工具flink-connector-kafka,直接帮我们实现了一个消费者FlinkKafkaConsumer,它就是用来读取Kafka数据的SourceFunction。
所以想要以Kafka作为数据源获取数据,我们只需要引入Kafka连接器的依赖。Flink官方提供的是一个通用的Kafka连接器,它会自动跟踪最新版本的Kafka客户端。目前最新版本只支持0.10.0版本以上的Kafka。这里我们需要导入的依赖如下。
1 | <dependency> |
代码如下:
1 | package com.day02 |
1.4 从数据生成器读取数据
Flink从1.11开始提供了一个内置的DataGen 连接器,主要是用于生成一些随机数,用于在没有数据源的时候,进行流任务的测试以及性能测试等。1.17提供了新的Source写法,需要导入依赖:
1 | <dependency> |
代码如下:
1 | public class DataGeneratorDemo { |
1.5Flink支持的数据类型
Flink的类型系统
Flink使用“类型信息”(TypeInformation)来统一表示数据类型。TypeInformation类是Flink中所有类型描述符的基类。它涵盖了类型的一些基本属性,并为每个数据类型生成特定的序列化器、反序列化器和比较器。
Flink支持的数据类型
对于常见的Java和Scala数据类型,Flink都是支持的。Flink在内部,Flink对支持不同的类型进行了划分,这些类型可以在Types工具类中找到:
(1)基本类型
所有Java基本类型及其包装类,再加上Void、String、Date、BigDecimal和BigInteger。
(2)数组类型
包括基本类型数组(PRIMITIVE_ARRAY)和对象数组(OBJECT_ARRAY)。
(3)复合数据类型
(4)辅助类型
(5)泛型类型(GENERIC)
Flink支持所有的Java类和Scala类。不过如果没有按照上面POJO类型的要求来定义,就会被Flink当作泛型类来处理。Flink会把泛型类型当作黑盒,无法获取它们内部的属性;它们也不是由Flink本身序列化的,而是由Kryo序列化的。
在这些类型中,元组类型和POJO类型最为灵活,因为它们支持创建复杂类型。而相比之下,POJO还支持在键(key)的定义中直接使用字段名,这会让我们的代码可读性大大增加。所以,在项目实践中,往往会将流处理程序中的元素类型定为Flink的POJO类型。
Flink对POJO类型的要求如下:
3)类型提示(Type Hints)
Flink还具有一个类型提取系统,可以分析函数的输入和返回类型,自动获取类型信息,从而获得对应的序列化器和反序列化器。但是,由于Java中泛型擦除的存在,在某些特殊情况下(比如Lambda表达式中),自动提取的信息是不够精细的——只告诉Flink当前的元素由“船头、船身、船尾”构成,根本无法重建出“大船”的模样;这时就需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。
为了解决这类问题,Java API提供了专门的“类型提示”(type hints)。
回忆一下之前的word count流处理程序,我们在将String类型的每个词转换成(word, count)二元组后,就明确地用returns指定了返回的类型。因为对于map里传入的Lambda表达式,系统只能推断出返回的是Tuple2类型,而无法得到Tuple2<String, Long>。只有显式地告诉系统当前的返回类型,才能正确地解析出完整数据。
1 | .map(word -> Tuple2.of(word, 1L)) |
Flink还专门提供了TypeHint类,它可以捕获泛型的类型信息,并且一直记录下来,为运行时提供足够的信息。我们同样可以通过.returns()方法,明确地指定转换之后的DataStream里元素的类型。
1 | returns(new TypeHint<Tuple2<Integer, SomeType>>(){}) |
转换算子(Transformation)
数据源读入数据之后,我们就可以使用各种转换算子,将一个或多个DataStream转换为新的DataStream。
1.基本转换算子(map/ filter/ flatMap)
1.1.1映射(map)
map是大家非常熟悉的大数据操作算子,主要用于将数据流中的数据进行转换,形成新的数据流。简单来说,就是一个“一一映射”,消费一个元素就产出一个元素。
我们只需要基于DataStream调用map()方法就可以进行转换处理。方法需要传入的参数是接口MapFunction的实现;返回值类型还是DataStream,不过泛型(流中的元素类型)可能改变。
下面的代码用不同的方式,实现了提取WaterSensor中的id字段的功能。
1 | package com.day02 |
上面代码中,MapFunction实现类的泛型类型,与输入数据类型和输出数据的类型有关。在实现MapFunction接口的时候,需要指定两个泛型,分别是输入事件和输出事件的类型,还需要重写一个map()方法,定义从一个输入事件转换为另一个输出事件的具体逻辑。
1.1.2过滤(filter)
filter转换操作,顾名思义是对数据流执行一个过滤,通过一个布尔条件表达式设置过滤条件,对于每一个流内元素进行判断,若为true则元素正常输出,若为false则元素被过滤掉。
进行filter转换之后的新数据流的数据类型与原数据流是相同的。filter转换需要传入的参数需要实现FilterFunction接口,而FilterFunction内要实现filter()方法,就相当于一个返回布尔类型的条件表达式。
案例需求:下面的代码会将数据流中传感器id为sensor_1的数据过滤出来。
1 | package com.day02 |
1.1.3 扁平映射(flatMap)
flatMap操作又称为扁平映射,主要是将数据流中的整体(一般是集合类型)拆分成一个一个的个体使用。消费一个元素,可以产生0到多个元素。flatMap可以认为是“扁平化”(flatten)和“映射”(map)两步操作的结合,也就是先按照某种规则对数据进行打散拆分,再对拆分后的元素做转换处理。
同map一样,flatMap也可以使用Lambda表达式或者FlatMapFunction接口实现类的方式来进行传参,返回值类型取决于所传参数的具体逻辑,可以与原数据流相同,也可以不同。
案例需求:如果输入的数据是sensor_1,只打印vc;如果输入的数据是sensor_2,既打印ts又打印vc。
实现代码如下:
1 | package com.day02 |
1.2聚合算子(Aggregation)
计算的结果不仅依赖当前数据,还跟之前的数据有关,相当于要把所有数据聚在一起进行汇总合并——这就是所谓的“聚合”(Aggregation),类似于MapReduce中的reduce操作。
1.2.1 按键分区(keyBy)
对于Flink而言,DataStream是没有直接进行聚合的API的。因为我们对海量数据做聚合肯定要进行分区并行处理,这样才能提高效率。所以在Flink中,要做聚合,需要先进行分区;这个操作就是通过keyBy来完成的。
keyBy是聚合前必须要用到的一个算子。keyBy通过指定键(key),可以将一条流从逻辑上划分成不同的分区(partitions)。这里所说的分区,其实就是并行处理的子任务。
基于不同的key,流中的数据将被分配到不同的分区中去;这样一来,所有具有相同的key的数据,都将被发往同一个分区。
在内部,是通过计算key的哈希值(hash code),对分区数进行取模运算来实现的。所以这里key如果是POJO的话,必须要重写hashCode()方法。
keyBy()方法需要传入一个参数,这个参数指定了一个或一组key。有很多不同的方法来指定key:比如对于Tuple数据类型,可以指定字段的位置或者多个位置的组合;对于POJO类型,可以指定字段的名称(String);另外,还可以传入Lambda表达式或者实现一个键选择器(KeySelector),用于说明从数据中提取key的逻辑。
我们可以以id作为key做一个分区操作,代码实现如下:
1 | package com.day02 |
需要注意的是,keyBy得到的结果将不再是DataStream,而是会将DataStream转换为KeyedStream。KeyedStream可以认为是“分区流”或者“键控流”,它是对DataStream按照key的一个逻辑分区,所以泛型有两个类型:除去当前流中的元素类型外,还需要指定key的类型。
KeyedStream也继承自DataStream,所以基于它的操作也都归属于DataStream API。但它跟之前的转换操作得到的SingleOutputStreamOperator不同,只是一个流的分区操作,并不是一个转换算子。KeyedStream是一个非常重要的数据结构,只有基于它才可以做后续的聚合操作(比如sum,reduce)。
1.2.2 简单聚合(sum/min/max/minBy/maxBy)
有了按键分区的数据流KeyedStream,我们就可以基于它进行聚合操作了。Flink为我们内置实现了一些最基本、最简单的聚合API,主要有以下几种:
sum():在输入流上,对指定的字段做叠加求和的操作。
min():在输入流上,对指定的字段求最小值。
max():在输入流上,对指定的字段求最大值。
minBy():与min()类似,在输入流上针对指定字段求最小值。不同的是,min()只计算指定字段的最小值,其他字段会保留最初第一个数据的值;而minBy()则会返回包含字段最小值的整条数据。
maxBy():与max()类似,在输入流上针对指定字段求最大值。两者区别与min()/minBy()完全一致。
简单聚合算子使用非常方便,语义也非常明确。这些聚合方法调用时,也需要传入参数;但并不像基本转换算子那样需要实现自定义函数,只要说明聚合指定的字段就可以了。指定字段的方式有两种:指定位置,和指定名称。
对于元组类型的数据,可以使用这两种方式来指定字段。需要注意的是,元组中字段的名称,是以f0、f1、f2、…来命名的。
如果数据流的类型是POJO类,那么就只能通过字段名称来指定,不能通过位置来指定了。
1 | public class TransAggregation { |
简单聚合算子返回的,同样是一个SingleOutputStreamOperator,也就是从KeyedStream又转换成了常规的DataStream。所以可以这样理解:keyBy和聚合是成对出现的,先分区、后聚合,得到的依然是一个DataStream。而且经过简单聚合之后的数据流,元素的数据类型保持不变。
一个聚合算子,会为每一个key保存一个聚合的值,在Flink中我们把它叫作“状态”(state)。所以每当有一个新的数据输入,算子就会更新保存的聚合结果,并发送一个带有更新后聚合值的事件到下游算子。对于无界流来说,这些状态是永远不会被清除的,所以我们使用聚合算子,应该只用在含有有限个key的数据流上。
1.2.3 归约聚合(reduce)
reduce可以对已有的数据进行归约处理,把每一个新输入的数据和当前已经归约出来的值,再做一个聚合计算。
reduce操作也会将KeyedStream转换为DataStream。它不会改变流的元素数据类型,所以输出类型和输入类型是一样的。
调用KeyedStream的reduce方法时,需要传入一个参数,实现ReduceFunction接口。接口在源码中的定义如下:
1 | public interface ReduceFunction<T> extends Function, Serializable { |
ReduceFunction接口里需要实现reduce()方法,这个方法接收两个输入事件,经过转换处理之后输出一个相同类型的事件。在流处理的底层实现过程中,实际上是将中间“合并的结果”作为任务的一个状态保存起来的;之后每来一个新的数据,就和之前的聚合状态进一步做归约。
我们可以单独定义一个函数类实现ReduceFunction接口,也可以直接传入一个匿名类。当然,同样也可以通过传入Lambda表达式实现类似的功能。
为了方便后续使用,定义一个WaterSensorMapFunction:
1 | public class WaterSensorMapFunction implements MapFunction<String,WaterSensor> { |
案例:使用reduce实现max和maxBy的功能。
1 | package com.day02 |
reduce同简单聚合算子一样,也要针对每一个key保存状态。因为状态不会清空,所以我们需要将reduce算子作用在一个有限key的流上。
1.3.3 用户自定义函数(UDF)
用户自定义函数(user-defined function,UDF),即用户可以根据自身需求,重新实现算子的逻辑。
用户自定义函数分为:函数类、匿名函数、富函数类。
需求:用来从用户的点击数据中筛选包含“sensor_1”的内容:
方式一:实现FilterFunction接口
方式二:通过匿名类来实现FilterFunction接口:
方式二的优化:为了类可以更加通用,我们还可以将用于过滤的关键字”home”抽象出来作为类的属性,调用构造方法时传进去。
方式三:采用匿名函数(Lambda)
1 | package com.day02 |
1.3.2 富函数类(Rich Function Classes)
“富函数类”也是DataStream API提供的一个函数类的接口,所有的Flink函数类都有其Rich版本。富函数类一般是以抽象类的形式出现的。例如:RichMapFunction、RichFilterFunction、RichReduceFunction等。
与常规函数类的不同主要在于,富函数类可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。
Rich Function有生命周期的概念。典型的生命周期方法有:
open()方法,是Rich Function的初始化方法,也就是会开启一个算子的生命周期。当一个算子的实际工作方法例如map()或者filter()方法被调用之前,open()会首先被调用。
close()方法,是生命周期中的最后一个调用的方法,类似于结束方法。一般用来做一些清理工作。
需要注意的是,这里的生命周期方法,对于一个并行子任务来说只会调用一次;而对应的,实际工作方法,例如RichMapFunction中的map(),在每条数据到来后都会触发一次调用。
来看一个例子说明:
1 | package com.day02 |
5.3.4 物理分区算子(Physical Partitioning)
常见的物理分区策略有:随机分配(Random)、轮询分配(Round-Robin)、重缩放(Rescale)和广播(Broadcast)。
1.4.1 随机分区(shuffle)
最简单的重分区方式就是直接“洗牌”。通过调用DataStream的.shuffle()方法,将数据随机地分配到下游算子的并行任务中去。
随机分区服从均匀分布(uniform distribution),所以可以把流中的数据随机打乱,均匀地传递到下游任务分区。因为是完全随机的,所以对于同样的输入数据, 每次执行得到的结果也不会相同。
经过随机分区之后,得到的依然是一个DataStream。
我们可以做个简单测试:将数据读入之后直接打印到控制台,将输出的并行度设置为2,中间经历一次shuffle。执行多次,观察结果是否相同。
1 | public class ShuffleExample { |
1.4.2 轮询分区(Round-Robin)
轮询,简单来说就是“发牌”,按照先后顺序将数据做依次分发。通过调用DataStream的.rebalance()方法,就可以实现轮询重分区。rebalance使用的是Round-Robin负载均衡算法,可以将输入流数据平均分配到下游的并行任务中去。
1 | stream.rebalance() |
1.4.3 重缩放分区(rescale)
重缩放分区和轮询分区非常相似。当调用rescale()方法时,其实底层也是使用Round-Robin算法进行轮询,但是只会将数据轮询发送到下游并行任务的一部分中。rescale的做法是分成小团体,发牌人只给自己团体内的所有人轮流发牌。
1 | stream.rescale() |
1.4.4 广播(broadcast)
这种方式其实不应该叫做“重分区”,因为经过广播之后,数据会在不同的分区都保留一份,可能进行重复处理。可以通过调用DataStream的broadcast()方法,将输入数据复制并发送到下游算子的所有并行任务中去。
1 | stream.broadcast() |
1.4.5 全局分区(global)
全局分区也是一种特殊的分区方式。这种做法非常极端,通过调用.global()方法,会将所有的输入流数据都发送到下游算子的第一个并行子任务中去。这就相当于强行让下游任务并行度变成了1,所以使用这个操作需要非常谨慎,可能对程序造成很大的压力。
1 | stream.global() |
1.4.6 自定义分区(Custom)
当Flink提供的所有分区策略都不能满足用户的需求时,我们可以通过使用partitionCustom()方法来自定义分区策略。
1)自定义分区器
1 | package com.day02 |
2)使用自定义分区器
1 | package com.day02 |
1.3.5分流
所谓“分流”,就是将一条数据流拆分成完全独立的两条、甚至多条流。也就是基于一个DataStream,定义一些筛选条件,将符合条件的数据拣选出来放到对应的流里。
1.3.5.1 简单实现
其实根据条件筛选数据的需求,本身非常容易实现:只要针对同一条流多次独立调用.filter()方法进行筛选,就可以得到拆分之后的流了。
案例需求:读取一个整数数字流,将数据流划分为奇数流和偶数流。
代码实现:
1 | public class SplitStreamByFilter { |
这种实现非常简单,但代码显得有些冗余——我们的处理逻辑对拆分出的三条流其实是一样的,却重复写了三次。而且这段代码背后的含义,是将原始数据流stream复制三份,然后对每一份分别做筛选;这明显是不够高效的。我们自然想到,能不能不用复制流,直接用一个算子就把它们都拆分开呢?
1.3.5.2 使用侧输出流
关于处理函数中侧输出流的用法,我们已经在7.5节做了详细介绍。简单来说,只需要调用上下文ctx的.output()方法,就可以输出任意类型的数据了。而侧输出流的标记和提取,都离不开一个“输出标签”(OutputTag),指定了侧输出流的id和类型。
代码实现:将WaterSensor按照Id类型进行分流。
1 | public class SplitStreamByOutputTag { |
1.3.6 基本合流操作
在实际应用中,我们经常会遇到来源不同的多条流,需要将它们的数据进行联合处理。所以Flink中合流的操作会更加普遍,对应的API也更加丰富。
1.3.6.1
最简单的合流操作,就是直接将多条流合在一起,叫作流的“联合”(union)。联合操作要求必须流中的数据类型必须相同,合并之后的新流会包括所有流中的元素,数据类型不变。
在代码中,我们只要基于DataStream直接调用.union()方法,传入其他DataStream作为参数,就可以实现流的联合了;得到的依然是一个DataStream:
1 | stream1.union(stream2, stream3, ...) |
注意:union()的参数可以是多个DataStream,所以联合操作可以实现多条流的合并。
代码实现:我们可以用下面的代码做一个简单测试:
1 | public class UnionExample { |
1.3.6.2 连接(Connect)
流的联合虽然简单,不过受限于数据类型不能改变,灵活性大打折扣,所以实际应用较少出现。除了联合(union),Flink还提供了另外一种方便的合流操作——连接(connect)。
1)连接流(ConnectedStreams)
代码实现:需要分为两步:首先基于一条DataStream调用.connect()方法,传入另外一条DataStream作为参数,将两条流连接起来,得到一个ConnectedStreams;然后再调用同处理方法得到DataStream。这里可以的调用的同处理方法有.map()/.flatMap(),以及.process()方法。
1 | public class ConnectDemo { |
上面的代码中,ConnectedStreams有两个类型参数,分别表示内部包含的两条流各自的数据类型;由于需要“一国两制”,因此调用.map()方法时传入的不再是一个简单的MapFunction,而是一个CoMapFunction,表示分别对两条流中的数据执行map操作。这个接口有三个类型参数,依次表示第一条流、第二条流,以及合并后的流中的数据类型。需要实现的方法也非常直白:.map1()就是对第一条流中数据的map操作,.map2()则是针对第二条流。
2)CoProcessFunction
与CoMapFunction类似,如果是调用.map()就需要传入一个CoMapFunction,需要实现map1()、map2()两个方法;而调用.process()时,传入的则是一个CoProcessFunction。它也是“处理函数”家族中的一员,用法非常相似。它需要实现的就是processElement1()、processElement2()两个方法,在每个数据到来时,会根据来源的流调用其中的一个方法进行处理。
值得一提的是,ConnectedStreams也可以直接调用.keyBy()进行按键分区的操作,得到的还是一个ConnectedStreams:
connectedStreams.keyBy(keySelector1, keySelector2);
这里传入两个参数keySelector1和keySelector2,是两条流中各自的键选择器;当然也可以直接传入键的位置值(keyPosition),或者键的字段名(field),这与普通的keyBy用法完全一致。ConnectedStreams进行keyBy操作,其实就是把两条流中key相同的数据放到了一起,然后针对来源的流再做各自处理,这在一些场景下非常有用。
案例需求:连接两条流,输出能根据id匹配上的数据(类似inner join效果)
1 | public class ConnectKeybyDemo { |
1.4输出算子
Flink作为数据处理框架,最终还是要把计算处理的结果写入外部存储,为外部应用提供支持。
1.4.1 连接到外部系统
Flink的DataStream API专门提供了向外部写入数据的方法:addSink。与addSource类似,addSink方法对应着一个“Sink”算子,主要就是用来实现与外部系统连接、并将数据提交写入的;Flink程序中所有对外的输出操作,一般都是利用Sink算子完成的。
Flink1.12以前,Sink算子的创建是通过调用DataStream的.addSink()方法实现的。
stream.addSink(new SinkFunction(…));
addSink方法同样需要传入一个参数,实现的是SinkFunction接口。在这个接口中只需要重写一个方法invoke(),用来将指定的值写入到外部系统中。这个方法在每条数据记录到来时都会调用。
Flink1.12开始,同样重构了Sink架构,
1 | stream.sinkTo(…) |
当然,Sink多数情况下同样并不需要我们自己实现。之前我们一直在使用的print方法其实就是一种Sink,它表示将数据流写入标准控制台打印输出。Flink官方为我们提供了一部分的框架的Sink连接器。如下图所示,列出了Flink官方目前支持的第三方系统连接器:
我们可以看到,像Kafka之类流式系统,Flink提供了完美对接,source/sink两端都能连接,可读可写;而对于Elasticsearch、JDBC等数据存储系统,则只提供了输出写入的sink连接器。
除Flink官方之外,Apache Bahir框架,也实现了一些其他第三方系统与Flink的连接器。
除此以外,就需要用户自定义实现sink连接器了。
5.4.2 输出到文件
Flink专门提供了一个流式文件系统的连接器:FileSink,为批处理和流处理提供了一个统一的Sink,它可以将分区文件写入Flink支持的文件系统。
FileSink支持行编码(Row-encoded)和批量编码(Bulk-encoded)格式。这两种不同的方式都有各自的构建器(builder),可以直接调用FileSink的静态方法:
- 行编码: FileSink.forRowFormat(basePath,rowEncoder)。
- 批量编码: FileSink.forBulkFormat(basePath,bulkWriterFactory)。
实例:
1 | package com.day02 |
1.4.3 输出到Kafka
(1)添加Kafka 连接器依赖
由于我们已经测试过从Kafka数据源读取数据,连接器相关依赖已经引入,这里就不重复介绍了。
(2)启动Kafka集群
(3)编写输出到Kafka的示例代码
输出无key的record:
1 | package com.day02 |
然后开一个消费者查看是否到数据
1.4.4 输出到MySQL(JDBC)
写入数据的MySQL的测试步骤如下。
(1)添加依赖
添加MySQL驱动:
1 | <dependency> |
官方还未提供flink-connector-jdbc的1.17.0的正式依赖,暂时从apache snapshot仓库下载,pom文件中指定仓库路径:
1 | <repositories> |
添加依赖:
1 | <dependency> |
如果不生效,还需要修改本地maven的配置文件,mirrorOf中添加如下标红内容:
1 | <mirror> |
(2)启动MySQL,在test库下建表ws
1 | mysql> |
(3)编写输出到MySQL的示例代码
1 | package com.day02 |
(4)运行代码,用客户端连接MySQL,查看是否成功写入数据。
1.4.5 自定义Sink输出
如果我们想将数据存储到我们自己的存储设备中,而Flink并没有提供可以直接使用的连接器,就只能自定义Sink进行输出了。与Source类似,Flink为我们提供了通用的SinkFunction接口和对应的RichSinkDunction抽象类,只要实现它,通过简单地调用DataStream的.addSink()方法就可以自定义写入任何外部存储。
1 | stream.addSink(new MySinkFunction<String>()); |